If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+54t+16=0
a = 16; b = 54; c = +16;
Δ = b2-4ac
Δ = 542-4·16·16
Δ = 1892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1892}=\sqrt{4*473}=\sqrt{4}*\sqrt{473}=2\sqrt{473}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{473}}{2*16}=\frac{-54-2\sqrt{473}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{473}}{2*16}=\frac{-54+2\sqrt{473}}{32} $
| -15+7=-4(x+9) | | 5=5+15t-4.9t^2 | | 6(6x)=12 | | 5(2x+6)=-42+32 | | 3(n+2)=5 | | −108π=6πj−108π=6πj | | 7x-21=119 | | 5.2=a−0.45.2=a−0.4 | | 21-7x=119 | | x2+5x-14=0 | | t^2-9t+39=0 | | x+2x+x+5=100 | | 0.5x+x-100=x+5 | | 64=x+x+x+2.5x+2.5x | | 2*r(4)=r(8) | | w-8=3w | | -13+13x+12x^2=0 | | 12-4*5=5x-4-3x+10 | | 4(2x-5(x-3)=6 | | -10^2-39x-35=0 | | 4z-8=3z+9 | | 4-4=5x-3x | | 1x+-5=5+-3x | | 7x+6-4=15 | | n²-65n+1000=0 | | 0.5x^2-6x+20=0 | | s(3)+s(7)=s(10) | | 15=7x+6-4 | | (3)+s(7)=s(10) | | x+3x+2x=50 | | (11a+3)−18a=−4 | | s(3)=76+207 |